Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(11)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-38002963

RESUMO

Since the discovery of RNA splicing as a fundamental step to remove introns from pre-mRNA to produce mature mRNAs, substantial research in the past decades has highlighted RNA splicing as a critical mediator of gene expression and proteome diversity, also being important in many developmental and biological processes [...].


Assuntos
Neoplasias , Splicing de RNA , Humanos , Splicing de RNA/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Íntrons/genética
2.
iScience ; 26(10): 107746, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37744035

RESUMO

Glutamine:fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP). A 54-bp exon 9 of GFPT1 is specifically included in skeletal and cardiac muscles to generate a long isoform of GFPT1 (GFPT1-L). We showed that SRSF1 and Rbfox1/2 cooperatively enhance, and hnRNP H/F suppresses, the inclusion of human GFPT1 exon 9 by modulating recruitment of U1 snRNP. Knockout (KO) of GFPT1-L in skeletal muscle markedly increased the amounts of GFPT1 and UDP-HexNAc, which subsequently suppressed the glycolytic pathway. Aged KO mice showed impaired insulin-mediated glucose uptake, as well as muscle weakness and fatigue likely due to abnormal formation and maintenance of the neuromuscular junction. Taken together, GFPT1-L is likely to be acquired in evolution in mammalian striated muscles to attenuate the HBP for efficient glycolytic energy production, insulin-mediated glucose uptake, and the formation and maintenance of the neuromuscular junction.

3.
Cancer Discov ; 13(7): 1678-1695, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37098965

RESUMO

Inflammation is strongly associated with pancreatic ductal adenocarcinoma (PDAC), a highly lethal malignancy. Dysregulated RNA splicing factors have been widely reported in tumorigenesis, but their involvement in pancreatitis and PDAC is not well understood. Here, we report that the splicing factor SRSF1 is highly expressed in pancreatitis, PDAC precursor lesions, and tumors. Increased SRSF1 is sufficient to induce pancreatitis and accelerate KRASG12D-mediated PDAC. Mechanistically, SRSF1 activates MAPK signaling-partly by upregulating interleukin 1 receptor type 1 (IL1R1) through alternative-splicing-regulated mRNA stability. Additionally, SRSF1 protein is destabilized through a negative feedback mechanism in phenotypically normal epithelial cells expressing KRASG12D in mouse pancreas and in pancreas organoids acutely expressing KRASG12D, buffering MAPK signaling and maintaining pancreas cell homeostasis. This negative feedback regulation of SRSF1 is overcome by hyperactive MYC, facilitating PDAC tumorigenesis. Our findings implicate SRSF1 in the etiology of pancreatitis and PDAC, and point to SRSF1-misregulated alternative splicing as a potential therapeutic target. SIGNIFICANCE: We describe the regulation of splicing factor SRSF1 expression in the context of pancreas cell identity, plasticity, and inflammation. SRSF1 protein downregulation is involved in a negative feedback cellular response to KRASG12D expression, contributing to pancreas cell homeostasis. Conversely, upregulated SRSF1 promotes pancreatitis and accelerates KRASG12D-mediated tumorigenesis through enhanced IL1 and MAPK signaling. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatite , Animais , Camundongos , Processamento Alternativo , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Inflamação , Neoplasias Pancreáticas/patologia , Pancreatite/genética , Pancreatite/complicações , Pancreatite/patologia , Fatores de Processamento de RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Humanos
4.
Genes (Basel) ; 14(2)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36833284

RESUMO

Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved and well-characterized biological mechanism that ensures the fidelity and regulation of gene expression. Initially, NMD was described as a cellular surveillance or quality control process to promote selective recognition and rapid degradation of erroneous transcripts harboring a premature translation-termination codon (PTC). As estimated, one-third of mutated and disease-causing mRNAs were reported to be targeted and degraded by NMD, suggesting the significance of this intricate mechanism in maintaining cellular integrity. It was later revealed that NMD also elicits down-regulation of many endogenous mRNAs without mutations (~10% of the human transcriptome). Therefore, NMD modulates gene expression to evade the generation of aberrant truncated proteins with detrimental functions, compromised activities, or dominant-negative effects, as well as by controlling the abundance of endogenous mRNAs. By regulating gene expression, NMD promotes diverse biological functions during development and differentiation, and facilitates cellular responses to adaptation, physiological changes, stresses, environmental insults, etc. Mutations or alterations (such as abnormal expression, degradation, post-translational modification, etc.) that impair the function or expression of proteins associated with the NMD pathway can be deleterious to cells and may cause pathological consequences, as implicated in developmental and intellectual disabilities, genetic defects, and cancer. Growing evidence in past decades has highlighted NMD as a critical driver of tumorigenesis. Advances in sequencing technologies provided the opportunity to identify many NMD substrate mRNAs in tumor samples compared to matched normal tissues. Interestingly, many of these changes are tumor-specific and are often fine-tuned in a tumor-specific manner, suggesting the complex regulation of NMD in cancer. Tumor cells differentially exploit NMD for survival benefits. Some tumors promote NMD to degrade a subset of mRNAs, such as those encoding tumor suppressors, stress response proteins, signaling proteins, RNA binding proteins, splicing factors, and immunogenic neoantigens. In contrast, some tumors suppress NMD to facilitate the expression of oncoproteins or other proteins beneficial for tumor growth and progression. In this review, we discuss how NMD is regulated as a critical mediator of oncogenesis to promote the development and progression of tumor cells. Understanding how NMD affects tumorigenesis differentially will pave the way for the development of more effective and less toxic, targeted therapeutic opportunities in the era of personalized medicine.


Assuntos
Neoplasias , Degradação do RNAm Mediada por Códon sem Sentido , Humanos , Transformação Celular Neoplásica , Códon sem Sentido , Diferenciação Celular
5.
Cancers (Basel) ; 12(6)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481522

RESUMO

Alternative splicing promotes proteome diversity by using limited number of genes, a key control point of gene expression. Splicing is carried out by large macromolecular machineries, called spliceosome, composed of small RNAs and proteins. Alternative splicing is regulated by splicing regulatory cis-elements in RNA and trans-acting splicing factors that are often tightly regulated in a tissue-specific and developmental stage-specific manner. The biogenesis of ribonucleoprotein (RNP) complexes is strictly regulated to ensure that correct complements of RNA and proteins are coordinated in the right cell at the right time to support physiological functions. Any perturbations that impair formation of functional spliceosomes by disrupting the cis-elements, or by compromising RNA-binding or function of trans-factors can be deleterious to cells and result in pathological consequences. The recent discovery of oncogenic mutations in splicing factors, and growing evidence of the perturbed splicing in multiple types of cancer, underscores RNA processing defects as a critical driver of oncogenesis. These findings have resulted in a growing interest in targeting RNA splicing as a therapeutic approach for cancer treatment. This review summarizes our current understanding of splicing alterations in cancer, recent therapeutic efforts targeting splicing defects in cancer, and future potentials to develop novel cancer therapies.

6.
Genes Dev ; 34(5-6): 413-427, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001512

RESUMO

Oncogenic mutations in the RNA splicing factors SRSF2, SF3B1, and U2AF1 are the most frequent class of mutations in myelodysplastic syndromes and are also common in clonal hematopoiesis, acute myeloid leukemia, chronic lymphocytic leukemia, and a variety of solid tumors. They cause genome-wide splicing alterations that affect important regulators of hematopoiesis. Several mRNA isoforms promoted by the various splicing factor mutants comprise a premature termination codon (PTC) and are therefore potential targets of nonsense-mediated mRNA decay (NMD). In light of the mechanistic relationship between splicing and NMD, we sought evidence for a specific role of mutant SRSF2 in NMD. We show that SRSF2 Pro95 hot spot mutations elicit enhanced mRNA decay, which is dependent on sequence-specific RNA binding and splicing. SRSF2 mutants enhance the deposition of exon junction complexes (EJCs) downstream from the PTC through RNA-mediated molecular interactions. This architecture then favors the association of key NMD factors to elicit mRNA decay. Gene-specific blocking of EJC deposition by antisense oligonucleotides circumvents aberrant NMD promoted by mutant SRSF2, restoring the expression of PTC-containing transcript. Our study uncovered critical effects of SRSF2 mutants in hematologic malignancies, reflecting the regulation at multiple levels of RNA metabolism, from splicing to decay.


Assuntos
Mutação/genética , Síndromes Mielodisplásicas/genética , Splicing de RNA/genética , Estabilidade de RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Células K562 , Leucemia Mieloide Aguda/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética
7.
Cell ; 180(1): 208-208.e1, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31951519

RESUMO

RNA splicing, the spliceosome-catalyzed process by which pre-messenger RNA (pre-mRNA) is processed to mature mRNA, is altered in a number of ways in cancer. Tumor-specific splicing alterations are created by mutations that disrupt splicing-regulatory elements within genes and impair splicing recognition or by altering the RNA-binding preferences of individual splicing factors. This SnapShot summarizes our current understanding of splicing-factor alterations in cancers. To view this SnapShot, open or download the PDF.


Assuntos
Processamento Alternativo/genética , Neoplasias/genética , Sítios de Splice de RNA/genética , Humanos , Mutação , Precursores de RNA/metabolismo , Splicing de RNA/genética , Splicing de RNA/fisiologia , Fatores de Processamento de RNA/genética , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo
8.
Nature ; 574(7777): 273-277, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578525

RESUMO

Transcription and pre-mRNA splicing are key steps in the control of gene expression and mutations in genes regulating each of these processes are common in leukaemia1,2. Despite the frequent overlap of mutations affecting epigenetic regulation and splicing in leukaemia, how these processes influence one another to promote leukaemogenesis is not understood and, to our knowledge, there is no functional evidence that mutations in RNA splicing factors initiate leukaemia. Here, through analyses of transcriptomes from 982 patients with acute myeloid leukaemia, we identified frequent overlap of mutations in IDH2 and SRSF2 that together promote leukaemogenesis through coordinated effects on the epigenome and RNA splicing. Whereas mutations in either IDH2 or SRSF2 imparted distinct splicing changes, co-expression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than either mutation alone. Consistent with this, co-expression of mutant IDH2 and SRSF2 resulted in lethal myelodysplasia with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. IDH2 and SRSF2 double-mutant cells exhibited aberrant splicing and reduced expression of INTS3, a member of the integrator complex3, concordant with increased stalling of RNA polymerase II (RNAPII). Aberrant INTS3 splicing contributed to leukaemogenesis in concert with mutant IDH2 and was dependent on mutant SRSF2 binding to cis elements in INTS3 mRNA and increased DNA methylation of INTS3. These data identify a pathogenic crosstalk between altered epigenetic state and splicing in a subset of leukaemias, provide functional evidence that mutations in splicing factors drive myeloid malignancy development, and identify spliceosomal changes as a mediator of IDH2-mutant leukaemogenesis.


Assuntos
Processamento Alternativo/genética , Carcinogênese/genética , Epigênese Genética , Leucemia Mieloide Aguda/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação/genética , RNA Polimerase II/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Transcriptoma
9.
Mol Cell ; 74(6): 1189-1204.e6, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226278

RESUMO

RNA-binding proteins (RBPs) regulate post-transcriptional gene expression by recognizing short and degenerate sequence motifs in their target transcripts, but precisely defining their binding specificity remains challenging. Crosslinking and immunoprecipitation (CLIP) allows for mapping of the exact protein-RNA crosslink sites, which frequently reside at specific positions in RBP motifs at single-nucleotide resolution. Here, we have developed a computational method, named mCross, to jointly model RBP binding specificity while precisely registering the crosslinking position in motif sites. We applied mCross to 112 RBPs using ENCODE eCLIP data and validated the reliability of the discovered motifs by genome-wide analysis of allelic binding sites. Our analyses revealed that the prototypical SR protein SRSF1 recognizes clusters of GGA half-sites in addition to its canonical GGAGGA motif. Therefore, SRSF1 regulates splicing of a much larger repertoire of transcripts than previously appreciated, including HNRNPD and HNRNPDL, which are involved in multivalent protein assemblies and phase separation.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo D/química , Modelos Moleculares , RNA/química , Fatores de Processamento de Serina-Arginina/química , Sequência de Bases , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Expressão Gênica , Células HeLa , Células Hep G2 , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Humanos , Células K562 , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/genética , RNA/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
10.
Cell Rep ; 23(7): 2186-2198, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768215

RESUMO

The splicing factor SRSF1 promotes nonsense-mediated mRNA decay (NMD), a quality control mechanism that degrades mRNAs with premature termination codons (PTCs). Here we show that transcript-bound SRSF1 increases the binding of NMD factor UPF1 to mRNAs while in, or associated with, the nucleus, bypassing UPF2 recruitment and promoting NMD. SRSF1 promotes NMD when positioned downstream of a PTC, which resembles the mode of action of exon junction complex (EJC) and NMD factors. Moreover, splicing and/or EJC deposition increase the effect of SRSF1 on NMD. Lastly, SRSF1 enhances NMD of PTC-containing endogenous transcripts that result from various events. Our findings reveal an alternative mechanism for UPF1 recruitment, uncovering an additional connection between splicing and NMD. SRSF1's role in the mRNA's journey from splicing to decay has broad implications for gene expression regulation and genetic diseases.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Processamento Alternativo/genética , Motivos de Aminoácidos , Núcleo Celular/metabolismo , Códon sem Sentido/genética , Éxons/genética , Células HeLa , Humanos , Modelos Genéticos , Fosforilação , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/genética , Fatores de Transcrição/metabolismo
11.
Sci Rep ; 7(1): 10446, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874828

RESUMO

Dok-7 is a non-catalytic adaptor protein that facilitates agrin-induced clustering of acetylcholine receptors (AChR) at the neuromuscular junction. Alternative selection of 5' splice sites (SSs) of DOK7 intron 4 generates canonical and frame-shifted transcripts. We found that the canonical full-length Dok-7 enhanced AChR clustering, whereas the truncated Dok-7 did not. We identified a splicing cis-element close to the 3' end of exon 4 by block-scanning mutagenesis. RNA affinity purification and mass spectrometry revealed that SRSF1 binds to the cis-element. Knocking down of SRSF1 enhanced selection of the intron-distal 5' SS of DOK7 intron 4, whereas MS2-mediated artificial tethering of SRSF1 to the identified cis-element suppressed it. Isolation of an early spliceosomal complex revealed that SRSF1 inhibited association of U1 snRNP to the intron-distal 5' SS, and rather enhanced association of U1 snRNP to the intron-proximal 5' SS, which led to upregulation of the canonical DOK7 transcript. Integrated global analysis of CLIP-seq and RNA-seq also indicated that binding of SRSF1 immediately upstream to two competing 5' SSs suppresses selection of the intron-distal 5' SS in hundreds of human genes. We demonstrate that SRSF1 critically regulates alternative selection of adjacently placed 5' SSs by modulating binding of U1 snRNP.


Assuntos
Processamento Alternativo , Éxons , Íntrons , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sítios de Splice de RNA , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , Ligação Proteica , Ratos , Elementos Reguladores de Transcrição
12.
Nucleic Acids Res ; 45(3): 1455-1468, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180311

RESUMO

Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation.


Assuntos
Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Poliadenilação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Ligação Competitiva , Células CACO-2 , Linhagem Celular , Fator Estimulador de Clivagem , Éxons , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/antagonistas & inibidores , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos Reguladores de Transcrição
13.
J Neurochem ; 142 Suppl 2: 64-72, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28072465

RESUMO

We humans have evolved by acquiring diversity of alternative RNA metabolisms including alternative means of splicing and transcribing non-coding genes, and not by acquiring new coding genes. Tissue-specific and developmental stage-specific alternative RNA splicing is achieved by tightly regulated spatiotemporal regulation of expressions and activations of RNA-binding proteins that recognize their cognate splicing cis-elements on nascent RNA transcripts. Genes expressed at the neuromuscular junction are also alternatively spliced. In addition, germline mutations provoke aberrant splicing by compromising binding of RNA-binding proteins, and cause congenital myasthenic syndromes (CMS). We present physiological splicing mechanisms of genes for agrin (AGRN), acetylcholinesterase (ACHE), MuSK (MUSK), acetylcholine receptor (AChR) α1 subunit (CHRNA1), and collagen Q (COLQ) in human, and their aberration in diseases. Splicing isoforms of AChET , AChEH , and AChER are generated by hnRNP H/F. Skipping of MUSK exon 10 makes a Wnt-insensitive MuSK isoform, which is unique to human. Skipping of exon 10 is achieved by coordinated binding of hnRNP C, YB-1, and hnRNP L to exon 10. Exon P3A of CHRNA1 is alternatively included to generate a non-functional AChR α1 subunit in human. Molecular dissection of splicing mutations in patients with CMS reveals that exon P3A is alternatively skipped by hnRNP H, polypyrimidine tract-binding protein 1, and hnRNP L. Similarly, analysis of an exonic mutation in COLQ exon 16 in a CMS patient discloses that constitutive splicing of exon 16 requires binding of serine arginine-rich splicing factor 1. Intronic and exonic splicing mutations in CMS enable us to dissect molecular mechanisms underlying alternative and constitutive splicing of genes expressed at the neuromuscular junction. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Assuntos
Colinérgicos/farmacologia , Éxons/genética , Síndromes Miastênicas Congênitas/genética , Junção Neuromuscular/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Splicing de RNA/efeitos dos fármacos , Animais , Colinérgicos/metabolismo , Humanos , Junção Neuromuscular/genética , Splicing de RNA/genética
14.
J Hum Genet ; 61(7): 633-40, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27009626

RESUMO

Precise spatiotemporal regulation of splicing is mediated by splicing cis-elements on pre-mRNA. Single-nucleotide variations (SNVs) affecting intronic cis-elements possibly compromise splicing, but no efficient tool has been available to identify them. Following an effect-size analysis of each intronic nucleotide on annotated alternative splicing, we extracted 105 parameters that could affect the strength of the splicing signals. However, we could not generate reliable support vector regression models to predict the percent-splice-in (PSI) scores for normal human tissues. Next, we generated support vector machine (SVM) models using 110 parameters to directly differentiate pathogenic SNVs in the Human Gene Mutation Database and normal SNVs in the dbSNP database, and we obtained models with a sensitivity of 0.800±0.041 (mean and s.d.) and a specificity of 0.849±0.021. Our IntSplice models were more discriminating than SVM models that we generated with Shapiro-Senapathy score and MaxEntScan::score3ss. We applied IntSplice to a naturally occurring and nine artificial intronic mutations in RAPSN causing congenital myasthenic syndrome. IntSplice correctly predicted the splicing consequences for nine of the ten mutants. We created a web service program, IntSplice (http://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice) to predict splicing-affecting SNVs at intronic positions from -50 to -3.


Assuntos
Biologia Computacional/métodos , Genoma Humano , Íntrons , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Software , Adulto , Linhagem Celular , Bases de Dados de Ácidos Nucleicos , Expressão Gênica , Humanos , Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Especificidade de Órgãos/genética , Sensibilidade e Especificidade , Máquina de Vetores de Suporte , Navegador
15.
Sci Rep ; 5: 13208, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26282582

RESUMO

The catalytic subunits of acetylcholinesterase (AChE) are anchored in the basal lamina of the neuromuscular junction using a collagen-like tail subunit (ColQ) encoded by COLQ. Mutations in COLQ cause endplate AChE deficiency. An A-to-G mutation predicting p.E415G in COLQ exon 16 identified in a patient with endplate AChE deficiency causes exclusive skipping of exon 16. RNA affinity purification, mass spectrometry, and siRNA-mediated gene knocking down disclosed that the mutation disrupts binding of a splicing-enhancing RNA-binding protein, SRSF1, and de novo gains binding of a splicing-suppressing RNA-binding protein, hnRNP H. MS2-mediated artificial tethering of each factor demonstrated that SRSF1 and hnRNP H antagonistically modulate splicing by binding exclusively to the target in exon 16. Further analyses with artificial mutants revealed that SRSF1 is able to bind to degenerative binding motifs, whereas hnRNP H strictly requires an uninterrupted stretch of poly(G). The mutation compromised splicing of the downstream intron. Isolation of early spliceosome complex revealed that the mutation impairs binding of U1-70K (snRNP70) to the downstream 5' splice site. Global splicing analysis with RNA-seq revealed that exons carrying the hnRNP H-binding GGGGG motif are predisposed to be skipped compared to those carrying the SRSF1-binding GGAGG motif in both human and mouse brains.


Assuntos
Acetilcolinesterase/genética , Colágeno/genética , Éxons/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Proteínas Musculares/genética , Síndromes Miastênicas Congênitas/genética , Sítios de Splice de RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Mutação/genética , Ligação Proteica/genética
16.
Sci Rep ; 4: 6841, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25354590

RESUMO

Muscle specific receptor tyrosine kinase (MuSK) is an essential postsynaptic transmembrane molecule that mediates clustering of acetylcholine receptors (AChR). MUSK exon 10 is alternatively skipped in human, but not in mouse. Skipping of this exon disrupts a cysteine-rich region (Fz-CRD), which is essential for Wnt-mediated AChR clustering. To investigate the underlying mechanisms of alternative splicing, we exploited block-scanning mutagenesis with human minigene and identified a 20-nucleotide block that contained exonic splicing silencers. Using RNA-affinity purification, mass spectrometry, and Western blotting, we identified that hnRNP C, YB-1 and hnRNP L are bound to MUSK exon 10. siRNA-mediated knockdown and cDNA overexpression confirmed the additive, as well as the independent, splicing suppressing effects of hnRNP C, YB-1 and hnRNP L. Antibody-mediated in vitro protein depletion and scanning mutagenesis additionally revealed that binding of hnRNP C to RNA subsequently promotes binding of YB-1 and hnRNP L to the immediate downstream sites and enhances exon skipping. Simultaneous tethering of two splicing trans-factors to the target confirmed the cooperative effect of YB-1 and hnRNP L on hnRNP C-mediated exon skipping. Search for a similar motif in the human genome revealed nine alternative exons that were individually or coordinately regulated by hnRNP C and YB-1.


Assuntos
Processamento Alternativo , Éxons , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Diferenciação Celular/genética , Linhagem Celular , Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Loci Gênicos , Humanos , Camundongos , Desenvolvimento Muscular/genética , Especificidade de Órgãos/genética , Ligação Proteica , Isoformas de Proteínas , RNA Mensageiro/genética , Elementos Silenciadores Transcricionais , Proteínas Wnt/metabolismo
17.
Sci Rep ; 3: 2931, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24121633

RESUMO

CHRNA1 gene, encoding the muscle nicotinic acetylcholine receptor alpha subunit, harbors an inframe exon P3A. Inclusion of exon P3A disables assembly of the acetylcholine receptor subunits. A single nucleotide mutation in exon P3A identified in congenital myasthenic syndrome causes exclusive inclusion of exon P3A. The mutation gains a de novo binding affinity for a splicing enhancing RNA-binding protein, hnRNP LL, and displaces binding of a splicing suppressing RNA-binding protein, hnRNP L. The hnRNP L binds to another splicing repressor PTB through the proline-rich region and promotes PTB binding to the polypyrimidine tract upstream of exon P3A, whereas hnRNP LL lacking the proline-rich region cannot bind to PTB. Interaction of hnRNP L with PTB inhibits association of U2AF(65) and U1 snRNP with the upstream and downstream of P3A, respectively, which causes a defect in exon P3A definition. HnRNP L and hnRNP LL thus antagonistically modulate PTB-mediated splicing suppression of exon P3A.


Assuntos
Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Precursores de RNA/genética , Splicing de RNA , Receptores Nicotínicos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Estudos de Casos e Controles , Linhagem Celular , Éxons , Ordem dos Genes , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Dados de Sequência Molecular , Placa Motora/patologia , Placa Motora/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Motivos de Nucleotídeos , Domínios Proteicos Ricos em Prolina , Ligação Proteica , Precursores de RNA/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...